Highest vectors of representations (total 4) ; the vectors are over the primal subalgebra. | \(g_{25}\) | \(g_{5}+3/4g_{4}\) | \(g_{20}\) | \(g_{13}\) |
weight | \(2\omega_{1}\) | \(2\omega_{4}\) | \(\omega_{1}+3\omega_{4}\) | \(6\omega_{4}\) |
Isotypical components + highest weight | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0, 0) | \(\displaystyle V_{2\omega_{4}} \) → (0, 0, 0, 2) | \(\displaystyle V_{\omega_{1}+3\omega_{4}} \) → (1, 0, 0, 3) | \(\displaystyle V_{6\omega_{4}} \) → (0, 0, 0, 6) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(2\omega_{1}\) \(\omega_{2}\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{3}\) \(\omega_{1}+\omega_{2}-\omega_{3}\) \(-2\omega_{2}+2\omega_{3}\) \(-\omega_{1}+2\omega_{2}-\omega_{3}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(0\) \(\omega_{1}-2\omega_{2}+\omega_{3}\) \(2\omega_{2}-2\omega_{3}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{3}\) \(-\omega_{1}+\omega_{2}-\omega_{3}\) \(2\omega_{1}-2\omega_{2}\) \(-\omega_{2}\) \(-2\omega_{1}\) | \(2\omega_{4}\) \(0\) \(-2\omega_{4}\) | \(\omega_{1}+3\omega_{4}\) \(-\omega_{1}+\omega_{2}+3\omega_{4}\) \(\omega_{1}+\omega_{4}\) \(-\omega_{2}+\omega_{3}+3\omega_{4}\) \(-\omega_{1}+\omega_{2}+\omega_{4}\) \(\omega_{1}-\omega_{4}\) \(\omega_{2}-\omega_{3}+3\omega_{4}\) \(-\omega_{2}+\omega_{3}+\omega_{4}\) \(-\omega_{1}+\omega_{2}-\omega_{4}\) \(\omega_{1}-3\omega_{4}\) \(\omega_{1}-\omega_{2}+3\omega_{4}\) \(\omega_{2}-\omega_{3}+\omega_{4}\) \(-\omega_{2}+\omega_{3}-\omega_{4}\) \(-\omega_{1}+\omega_{2}-3\omega_{4}\) \(-\omega_{1}+3\omega_{4}\) \(\omega_{1}-\omega_{2}+\omega_{4}\) \(\omega_{2}-\omega_{3}-\omega_{4}\) \(-\omega_{2}+\omega_{3}-3\omega_{4}\) \(-\omega_{1}+\omega_{4}\) \(\omega_{1}-\omega_{2}-\omega_{4}\) \(\omega_{2}-\omega_{3}-3\omega_{4}\) \(-\omega_{1}-\omega_{4}\) \(\omega_{1}-\omega_{2}-3\omega_{4}\) \(-\omega_{1}-3\omega_{4}\) | \(6\omega_{4}\) \(4\omega_{4}\) \(2\omega_{4}\) \(0\) \(-2\omega_{4}\) \(-4\omega_{4}\) \(-6\omega_{4}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(2\omega_{1}\) \(\omega_{2}\) \(-2\omega_{1}+2\omega_{2}\) \(\omega_{1}-\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{3}\) \(\omega_{1}+\omega_{2}-\omega_{3}\) \(-2\omega_{2}+2\omega_{3}\) \(-\omega_{1}+2\omega_{2}-\omega_{3}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(0\) \(\omega_{1}-2\omega_{2}+\omega_{3}\) \(2\omega_{2}-2\omega_{3}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{3}\) \(-\omega_{1}+\omega_{2}-\omega_{3}\) \(2\omega_{1}-2\omega_{2}\) \(-\omega_{2}\) \(-2\omega_{1}\) | \(2\omega_{4}\) \(0\) \(-2\omega_{4}\) | \(\omega_{1}+3\omega_{4}\) \(-\omega_{1}+\omega_{2}+3\omega_{4}\) \(\omega_{1}+\omega_{4}\) \(-\omega_{2}+\omega_{3}+3\omega_{4}\) \(-\omega_{1}+\omega_{2}+\omega_{4}\) \(\omega_{1}-\omega_{4}\) \(\omega_{2}-\omega_{3}+3\omega_{4}\) \(-\omega_{2}+\omega_{3}+\omega_{4}\) \(-\omega_{1}+\omega_{2}-\omega_{4}\) \(\omega_{1}-3\omega_{4}\) \(\omega_{1}-\omega_{2}+3\omega_{4}\) \(\omega_{2}-\omega_{3}+\omega_{4}\) \(-\omega_{2}+\omega_{3}-\omega_{4}\) \(-\omega_{1}+\omega_{2}-3\omega_{4}\) \(-\omega_{1}+3\omega_{4}\) \(\omega_{1}-\omega_{2}+\omega_{4}\) \(\omega_{2}-\omega_{3}-\omega_{4}\) \(-\omega_{2}+\omega_{3}-3\omega_{4}\) \(-\omega_{1}+\omega_{4}\) \(\omega_{1}-\omega_{2}-\omega_{4}\) \(\omega_{2}-\omega_{3}-3\omega_{4}\) \(-\omega_{1}-\omega_{4}\) \(\omega_{1}-\omega_{2}-3\omega_{4}\) \(-\omega_{1}-3\omega_{4}\) | \(6\omega_{4}\) \(4\omega_{4}\) \(2\omega_{4}\) \(0\) \(-2\omega_{4}\) \(-4\omega_{4}\) \(-6\omega_{4}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{2\omega_{1}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus M_{\omega_{1}+\omega_{2}-\omega_{3}} \oplus M_{-2\omega_{2}+2\omega_{3}}\oplus M_{-\omega_{1}+\omega_{3}}\oplus M_{\omega_{1}-2\omega_{2}+\omega_{3}}\oplus M_{-2\omega_{1}+2\omega_{2}} \oplus 3M_{0}\oplus M_{2\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-\omega_{3}}\oplus M_{2\omega_{2}-2\omega_{3}} \oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{-\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}} \oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{4}}\oplus M_{0}\oplus M_{-2\omega_{4}}\) | \(\displaystyle M_{\omega_{1}+3\omega_{4}}\oplus M_{-\omega_{2}+\omega_{3}+3\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}+3\omega_{4}} \oplus M_{\omega_{1}-\omega_{2}+3\omega_{4}}\oplus M_{\omega_{2}-\omega_{3}+3\omega_{4}}\oplus M_{-\omega_{1}+3\omega_{4}} \oplus M_{\omega_{1}+\omega_{4}}\oplus M_{-\omega_{2}+\omega_{3}+\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{4}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{4}} \oplus M_{\omega_{2}-\omega_{3}+\omega_{4}}\oplus M_{-\omega_{1}+\omega_{4}}\oplus M_{\omega_{1}-\omega_{4}}\oplus M_{-\omega_{2}+\omega_{3}-\omega_{4}} \oplus M_{-\omega_{1}+\omega_{2}-\omega_{4}}\oplus M_{\omega_{1}-\omega_{2}-\omega_{4}}\oplus M_{\omega_{2}-\omega_{3}-\omega_{4}} \oplus M_{-\omega_{1}-\omega_{4}}\oplus M_{\omega_{1}-3\omega_{4}}\oplus M_{-\omega_{2}+\omega_{3}-3\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}-3\omega_{4}} \oplus M_{\omega_{1}-\omega_{2}-3\omega_{4}}\oplus M_{\omega_{2}-\omega_{3}-3\omega_{4}}\oplus M_{-\omega_{1}-3\omega_{4}}\) | \(\displaystyle M_{6\omega_{4}}\oplus M_{4\omega_{4}}\oplus M_{2\omega_{4}}\oplus M_{0}\oplus M_{-2\omega_{4}}\oplus M_{-4\omega_{4}}\oplus M_{-6\omega_{4}}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{2\omega_{1}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus M_{\omega_{1}+\omega_{2}-\omega_{3}} \oplus M_{-2\omega_{2}+2\omega_{3}}\oplus M_{-\omega_{1}+\omega_{3}}\oplus M_{\omega_{1}-2\omega_{2}+\omega_{3}}\oplus M_{-2\omega_{1}+2\omega_{2}} \oplus 3M_{0}\oplus M_{2\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-\omega_{3}}\oplus M_{2\omega_{2}-2\omega_{3}} \oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{-\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}} \oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{4}}\oplus M_{0}\oplus M_{-2\omega_{4}}\) | \(\displaystyle M_{\omega_{1}+3\omega_{4}}\oplus M_{-\omega_{2}+\omega_{3}+3\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}+3\omega_{4}} \oplus M_{\omega_{1}-\omega_{2}+3\omega_{4}}\oplus M_{\omega_{2}-\omega_{3}+3\omega_{4}}\oplus M_{-\omega_{1}+3\omega_{4}} \oplus M_{\omega_{1}+\omega_{4}}\oplus M_{-\omega_{2}+\omega_{3}+\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{4}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{4}} \oplus M_{\omega_{2}-\omega_{3}+\omega_{4}}\oplus M_{-\omega_{1}+\omega_{4}}\oplus M_{\omega_{1}-\omega_{4}}\oplus M_{-\omega_{2}+\omega_{3}-\omega_{4}} \oplus M_{-\omega_{1}+\omega_{2}-\omega_{4}}\oplus M_{\omega_{1}-\omega_{2}-\omega_{4}}\oplus M_{\omega_{2}-\omega_{3}-\omega_{4}} \oplus M_{-\omega_{1}-\omega_{4}}\oplus M_{\omega_{1}-3\omega_{4}}\oplus M_{-\omega_{2}+\omega_{3}-3\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}-3\omega_{4}} \oplus M_{\omega_{1}-\omega_{2}-3\omega_{4}}\oplus M_{\omega_{2}-\omega_{3}-3\omega_{4}}\oplus M_{-\omega_{1}-3\omega_{4}}\) | \(\displaystyle M_{6\omega_{4}}\oplus M_{4\omega_{4}}\oplus M_{2\omega_{4}}\oplus M_{0}\oplus M_{-2\omega_{4}}\oplus M_{-4\omega_{4}}\oplus M_{-6\omega_{4}}\) |